Dr. Robin Kraft
Kurzer Lebenslauf
| 2020-2021 und seit 2024 | Wissenschaftlicher Mitarbeiter am Institut für Klinische Epidemiologie und Biometrie, Universität Würzburg |
| 2017-2023 | Wissenschaftlicher Mitarbeiter am Institut für Datenbanken und Informationssysteme, Universität Ulm |
| 2015-2017 | Studium M.Sc. Medieninformatik, Schwerpunkte Informationssysteme & Mobile Application Engineering, Universität Ulm |
| 2011-2015 | Studium B.Sc. Medieninformatik, Universität Ulm |
Wissenschaftliche Schwerpunkte
- Mobile Crowdsensing (MCS)
- Ecological Momentary Assessment (EMA)
- eHealth & mHealth
- Smart Sensing
Ausgewählte Publikationen der letzten Jahre
2025[ to top ]
-
. Global 10 year ecological momentary assessment and mobile sensing study on tinnitus and environmental sounds. NPJ Digit Med. 2025;8(1):162.
- [ DOI ]
-
. Extending a Highly Configurable EMA and JITAI Mobile App Framework with Passive Sensing, Gamification, and AI Features for a Large-Scale Physical Activity and Nutrition Study. In: Arabnia HR, Deligiannidis L, Shenavarmasouleh F, Amirian S, Ghareh Mohammadi F, editors. Computational Science and Computational Intelligence. Springer Nature Switzerland; 2025. pp. 26-41.
2024[ to top ]
-
. Engagement analysis of a persuasive-design-optimized eHealth intervention through machine learning. Sci Rep. 2024;14(1):21427.
- [ DOI ]
-
. Persuasive technologies design for mental and behavioral health platforms: A scoping literature review. PLOS Digit Health. 2024;3(5):e0000498.
- [ DOI ]
-
. Mobile Crowdsensing in Ecological Momentary Assessment mHealth Studies: A Systematic Review and Analysis. Sensors (Basel). 2024;24(2).
- [ DOI ]
2023[ to top ]
-
. Predicting the presence of tinnitus using ecological momentary assessments. Scientific Reports [Internet]. 2023;13(1):8989. Available from: https://doi.org/10.1038/s41598-023-36172-7
- [ DOI ]
-
. Exploring the usability of an internet-based intervention and its providing eHealth platform in an eye-tracking study. J Ambient Intell Humaniz Comput. 2023;14(7):9621-36.
- [ DOI ]
2022[ to top ]
-
. Towards the Interpretation of Sound Measurements from Smartphones Collected with Mobile Crowdsensing in the Healthcare Domain: An Experiment with Android Devices. Sensors [Internet]. 2022;22(1):170. Available from: https://www.mdpi.com/1424-8220/22/1/170
-
. Predicting Ecological Momentary Assessments in an App for Tinnitus by Learning From Each User’s Stream With a Contextual Multi-Armed Bandit. Frontiers in Neuroscience. 2022;16:836834.
- [ DOI ]
-
. Backend Concept of the eSano eHealth Platform for Internet- and Mobile-based Interventions. In: 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). 2022. pp. 88-93.
- [ DOI ]
-
. Dealing With Inaccurate Sensor Data in the Context of Mobile Crowdsensing and mHealth. IEEE J Biomed Health Inform. 2022;26(11):5439-4.
- [ DOI ]
2021[ to top ]
-
. User-centric vs whole-stream learning for EMA prediction. In: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). 2021. pp. 307-12.
- [ DOI ]
-
. eSano – An eHealth Platform for Internet- and Mobile-based Interventions. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021. pp. 1997-2002.
- [ DOI ]
-
. Literature-based requirements analysis review of persuasive systems design for mental health applications. Procedia Computer Science [Internet]. 2021;191:143-50. Available from: https://www.sciencedirect.com/science/article/pii/S1877050921014137
- [ DOI ]
-
. Interactive System for Similarity-Based Inspection and Assessment of the Well-Being of mHealth Users. Entropy [Internet]. 2021;23(12):1695. Available from: https://www.mdpi.com/1099-4300/23/12/1695
2020[ to top ]
-
. Efficient Processing of Geospatial mHealth Data Using a Scalable Crowdsensing Platform. Sensors [Internet]. 2020;20(12):3456. Available from: https://www.mdpi.com/1424-8220/20/12/3456
-
. The Effect of Non-Personalised Tips on the Continued Use of Self-Monitoring mHealth Applications. Brain Sciences [Internet]. 2020;10(12):924. Available from: https://www.mdpi.com/2076-3425/10/12/924
- [ DOI ]
-
. Mobile Health App Database - A Repository for Quality Ratings of mHealth Apps. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). 2020. pp. 427-32.
- [ DOI ]
-
. Combining Mobile Crowdsensing and Ecological Momentary Assessments in the Healthcare Domain. Frontiers in Neuroscience [Internet]. 2020;14. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2020.00164
- [ DOI ]




